The OpenNET Project / Index page

[ новости /+++ | форум | wiki | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

clock_getres (3)
  • clock_getres (2) ( FreeBSD man: Системные вызовы )
  • clock_getres (2) ( Linux man: Системные вызовы )
  • >> clock_getres (3) ( Linux man: Библиотечные вызовы )
  • clock_getres (3) ( POSIX man: Библиотечные вызовы )
  •  

    NAME

    clock_getres, clock_gettime, clock_settime - clock and time functions
     
    

    SYNOPSIS

    #include <time.h>

    int clock_getres(clockid_t clk_id, struct timespec *res);

    int clock_gettime(clockid_t clk_id, struct timespec *tp);

    int clock_settime(clockid_t clk_id, const struct timespec *tp);

    Link with -lrt.

    Feature Test Macro Requirements for glibc (see feature_test_macros(7)):

    clock_getres(), clock_gettime(), clock_settime(): _POSIX_C_SOURCE >= 199309L  

    DESCRIPTION

    The function clock_getres() finds the resolution (precision) of the specified clock clk_id, and, if res is non-NULL, stores it in the struct timespec pointed to by res. The resolution of clocks depends on the implementation and cannot be configured by a particular process. If the time value pointed to by the argument tp of clock_settime() is not a multiple of res, then it is truncated to a multiple of res.

    The functions clock_gettime() and clock_settime() retrieve and set the time of the specified clock clk_id.

    The res and tp arguments are timespec structures, as specified in <time.h>:

    struct timespec {
        time_t   tv_sec;        /* seconds */
        long     tv_nsec;       /* nanoseconds */
    };
    

    The clk_id argument is the identifier of the particular clock on which to act. A clock may be system-wide and hence visible for all processes, or per-process if it measures time only within a single process.

    All implementations support the system-wide real-time clock, which is identified by CLOCK_REALTIME. Its time represents seconds and nanoseconds since the Epoch. When its time is changed, timers for a relative interval are unaffected, but timers for an absolute point in time are affected.

    More clocks may be implemented. The interpretation of the corresponding time values and the effect on timers is unspecified.

    Sufficiently recent versions of glibc and the Linux kernel support the following clocks:

    CLOCK_REALTIME
    System-wide real-time clock. Setting this clock requires appropriate privileges.
    CLOCK_MONOTONIC
    Clock that cannot be set and represents monotonic time since some unspecified starting point.
    CLOCK_PROCESS_CPUTIME_ID
    High-resolution per-process timer from the CPU.
    CLOCK_THREAD_CPUTIME_ID
    Thread-specific CPU-time clock.
     

    RETURN VALUE

    clock_gettime(), clock_settime() and clock_getres() return 0 for success, or -1 for failure (in which case errno is set appropriately).  

    ERRORS

    EFAULT
    tp points outside the accessible address space.
    EINVAL
    The clk_id specified is not supported on this system.
    EPERM
    clock_settime() does not have permission to set the clock indicated.
     

    CONFORMING TO

    SUSv2, POSIX.1-2001.  

    AVAILABILITY

    On POSIX systems on which these functions are available, the symbol _POSIX_TIMERS is defined in <unistd.h> to a value greater than 0. The symbols _POSIX_MONOTONIC_CLOCK, _POSIX_CPUTIME, _POSIX_THREAD_CPUTIME indicate that CLOCK_MONOTONIC, CLOCK_PROCESS_CPUTIME_ID, CLOCK_THREAD_CPUTIME_ID are available. (See also sysconf(3).)  

    NOTES

     

    Note for SMP systems

    The CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID clocks are realized on many platforms using timers from the CPUs (TSC on i386, AR.ITC on Itanium). These registers may differ between CPUs and as a consequence these clocks may return bogus results if a process is migrated to another CPU.

    If the CPUs in an SMP system have different clock sources then there is no way to maintain a correlation between the timer registers since each CPU will run at a slightly different frequency. If that is the case then clock_getcpuclockid(0) will return ENOENT to signify this condition. The two clocks will then only be useful if it can be ensured that a process stays on a certain CPU.

    The processors in an SMP system do not start all at exactly the same time and therefore the timer registers are typically running at an offset. Some architectures include code that attempts to limit these offsets on bootup. However, the code cannot guarantee to accurately tune the offsets. Glibc contains no provisions to deal with these offsets (unlike the Linux Kernel). Typically these offsets are small and therefore the effects may be negligible in most cases.  

    BUGS

    According to POSIX.1-2001, the CLOCK_PROCESS_CPUTIME_ID and CLOCK_THREAD_CPUTIME_ID clocks should be settable using clock_settime(). However, the clocks currently are not settable.  

    SEE ALSO

    date(1), adjtimex(2), gettimeofday(2), settimeofday(2), time(2), clock_getcpuclockid(3), ctime(3), ftime(3), sysconf(3), time(7)  

    COLOPHON

    This page is part of release 3.14 of the Linux man-pages project. A description of the project, and information about reporting bugs, can be found at http://www.kernel.org/doc/man-pages/.


     

    Index

    NAME
    SYNOPSIS
    DESCRIPTION
    RETURN VALUE
    ERRORS
    CONFORMING TO
    AVAILABILITY
    NOTES
    Note for SMP systems
    BUGS
    SEE ALSO
    COLOPHON


    Поиск по тексту MAN-ов: 




    Спонсоры:
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2022 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру