The OpenNET Project / Index page

[ новости /+++ | форум | wiki | теги | ]

Интерактивная система просмотра системных руководств (man-ов)

 ТемаНаборКатегория 
 
 [Cписок руководств | Печать]

tc (8)
  • tc (8) ( Русские man: Команды системного администрирования )
  • >> tc (8) ( Linux man: Команды системного администрирования )
  •  

    NAME

    tc - show / manipulate traffic control settings
     
    

    SYNOPSIS

    tc qdisc [ add | change | replace | link ] dev DEV [ parent qdisc-id | root ] [ handle qdisc-id ] qdisc [ qdisc specific parameters ]

    tc class [ add | change | replace ] dev DEV parent qdisc-id [ classid class-id ] qdisc [ qdisc specific parameters ]

    tc filter [ add | change | replace ] dev DEV [ parent qdisc-id | root ] protocol protocol prio priority filtertype [ filtertype specific parameters ] flowid flow-id

    tc [-s | -d ] qdisc show [ dev DEV ] tc [-s | -d ] class show dev DEV tc filter show dev DEV

     

    DESCRIPTION

    Tc is used to configure Traffic Control in the Linux kernel. Traffic Control consists of the following:

    SHAPING
    When traffic is shaped, its rate of transmission is under control. Shaping may be more than lowering the available bandwidth - it is also used to smooth out bursts in traffic for better network behaviour. Shaping occurs on egress.

    SCHEDULING
    By scheduling the transmission of packets it is possible to improve interactivity for traffic that needs it while still guaranteeing bandwidth to bulk transfers. Reordering is also called prioritizing, and happens only on egress.

    POLICING
    Where shaping deals with transmission of traffic, policing pertains to traffic arriving. Policing thus occurs on ingress.

    DROPPING
    Traffic exceeding a set bandwidth may also be dropped forthwith, both on ingress and on egress.

    Processing of traffic is controlled by three kinds of objects: qdiscs, classes and filters.

     

    QDISCS

    qdisc is short for 'queueing discipline' and it is elementary to understanding traffic control. Whenever the kernel needs to send a packet to an interface, it is enqueued to the qdisc configured for that interface. Immediately afterwards, the kernel tries to get as many packets as possible from the qdisc, for giving them to the network adaptor driver.

    A simple QDISC is the 'pfifo' one, which does no processing at all and is a pure First In, First Out queue. It does however store traffic when the network interface can't handle it momentarily.

     

    CLASSES

    Some qdiscs can contain classes, which contain further qdiscs - traffic may then be enqueued in any of the inner qdiscs, which are within the classes. When the kernel tries to dequeue a packet from such a classful qdisc it can come from any of the classes. A qdisc may for example prioritize certain kinds of traffic by trying to dequeue from certain classes before others.

     

    FILTERS

    A filter is used by a classful qdisc to determine in which class a packet will be enqueued. Whenever traffic arrives at a class with subclasses, it needs to be classified. Various methods may be employed to do so, one of these are the filters. All filters attached to the class are called, until one of them returns with a verdict. If no verdict was made, other criteria may be available. This differs per qdisc.

    It is important to notice that filters reside within qdiscs - they are not masters of what happens.

     

    CLASSLESS QDISCS

    The classless qdiscs are:
    [p|b]fifo
    Simplest usable qdisc, pure First In, First Out behaviour. Limited in packets or in bytes.
    pfifo_fast
    Standard qdisc for 'Advanced Router' enabled kernels. Consists of a three-band queue which honors Type of Service flags, as well as the priority that may be assigned to a packet.
    red
    Random Early Detection simulates physical congestion by randomly dropping packets when nearing configured bandwidth allocation. Well suited to very large bandwidth applications.
    sfq
    Stochastic Fairness Queueing reorders queued traffic so each 'session' gets to send a packet in turn.
    tbf
    The Token Bucket Filter is suited for slowing traffic down to a precisely configured rate. Scales well to large bandwidths.
     

    CONFIGURING CLASSLESS QDISCS

    In the absence of classful qdiscs, classless qdiscs can only be attached at the root of a device. Full syntax: tc qdisc add dev DEV root QDISC QDISC-PARAMETERS

    To remove, issue tc qdisc del dev DEV root

    The pfifo_fast qdisc is the automatic default in the absence of a configured qdisc.

     

    CLASSFUL QDISCS

    The classful qdiscs are:
    CBQ
    Class Based Queueing implements a rich linksharing hierarchy of classes. It contains shaping elements as well as prioritizing capabilities. Shaping is performed using link idle time calculations based on average packet size and underlying link bandwidth. The latter may be ill-defined for some interfaces.
    HTB
    The Hierarchy Token Bucket implements a rich linksharing hierarchy of classes with an emphasis on conforming to existing practices. HTB facilitates guaranteeing bandwidth to classes, while also allowing specification of upper limits to inter-class sharing. It contains shaping elements, based on TBF and can prioritize classes. 
    PRIO
    The PRIO qdisc is a non-shaping container for a configurable number of classes which are dequeued in order. This allows for easy prioritization of traffic, where lower classes are only able to send if higher ones have no packets available. To facilitate configuration, Type Of Service bits are honored by default.
     

    THEORY OF OPERATION

    Classes form a tree, where each class has a single parent. A class may have multiple children. Some qdiscs allow for runtime addition of classes (CBQ, HTB) while others (PRIO) are created with a static number of children.

    Qdiscs which allow dynamic addition of classes can have zero or more subclasses to which traffic may be enqueued.

    Furthermore, each class contains a leaf qdisc which by default has pfifo behaviour though another qdisc can be attached in place. This qdisc may again contain classes, but each class can have only one leaf qdisc.

    When a packet enters a classful qdisc it can be classified to one of the classes within. Three criteria are available, although not all qdiscs will use all three:

    tc filters
    If tc filters are attached to a class, they are consulted first for relevant instructions. Filters can match on all fields of a packet header, as well as on the firewall mark applied by ipchains or iptables. See tc-filters(8).
    Type of Service
    Some qdiscs have built in rules for classifying packets based on the TOS field.
    skb->priority
    Userspace programs can encode a class-id in the 'skb->priority' field using the SO_PRIORITY option. Each node within the tree can have its own filters but higher level filters may also point directly to lower classes.

    If classification did not succeed, packets are enqueued to the leaf qdisc attached to that class. Check qdisc specific manpages for details, however.

     

    NAMING

    All qdiscs, classes and filters have IDs, which can either be specified or be automatically assigned.

    IDs consist of a major number and a minor number, separated by a colon.

    QDISCS
    A qdisc, which potentially can have children, gets assigned a major number, called a 'handle', leaving the minor number namespace available for classes. The handle is expressed as '10:'. It is customary to explicitly assign a handle to qdiscs expected to have children.

    CLASSES
    Classes residing under a qdisc share their qdisc major number, but each have a separate minor number called a 'classid' that has no relation to their parent classes, only to their parent qdisc. The same naming custom as for qdiscs applies.

    FILTERS
    Filters have a three part ID, which is only needed when using a hashed filter hierarchy, for which see tc-filters(8).
     

    UNITS

    All parameters accept a floating point number, possibly followed by a unit. Bandwidths or rates can be specified in:
    kbps
    Kilobytes per second
    mbps
    Megabytes per second
    kbit
    Kilobits per second
    mbit
    Megabits per second
    bps or a bare number
    Bytes per second Amounts of data can be specified in:
    kb or k
    Kilobytes
    mb or m
    Megabytes
    mbit
    Megabits
    kbit
    Kilobits
    b or a bare number
    Bytes. Lengths of time can be specified in:
    s, sec or secs
    Whole seconds
    ms, msec or msecs
    Milliseconds
    us, usec, usecs or a bare number
    Microseconds.

     

    TC COMMANDS

    The following commands are available for qdiscs, classes and filter:
    add
    Add a qdisc, class or filter to a node. For all entities, a parent must be passed, either by passing its ID or by attaching directly to the root of a device. When creating a qdisc or a filter, it can be named with the handle parameter. A class is named with the classid parameter.

    remove
    A qdisc can be removed by specifying its handle, which may also be 'root'. All subclasses and their leaf qdiscs are automatically deleted, as well as any filters attached to them.

    change
    Some entities can be modified 'in place'. Shares the syntax of 'add', with the exception that the handle cannot be changed and neither can the parent. In other words, change cannot move a node.

    replace
    Performs a nearly atomic remove/add on an existing node id. If the node does not exist yet it is created.

    link
    Only available for qdiscs and performs a replace where the node must exist already.

     

    HISTORY

    tc was written by Alexey N. Kuznetsov and added in Linux 2.2.  

    SEE ALSO

    tc-cbq(8), tc-htb(8), tc-sfq(8), tc-red(8), tc-tbf(8), tc-pfifo(8), tc-bfifo(8), tc-pfifo_fast(8), tc-filters(8)

     

    AUTHOR

    Manpage maintained by bert hubert (ahu@ds9a.nl)


     

    Index

    NAME
    SYNOPSIS
    DESCRIPTION
    QDISCS
    CLASSES
    FILTERS
    CLASSLESS QDISCS
    CONFIGURING CLASSLESS QDISCS
    CLASSFUL QDISCS
    THEORY OF OPERATION
    NAMING
    UNITS
    TC COMMANDS
    HISTORY
    SEE ALSO
    AUTHOR


    Поиск по тексту MAN-ов: 




    Спонсоры:
    PostgresPro
    Inferno Solutions
    Hosting by Hoster.ru
    Хостинг:

    Закладки на сайте
    Проследить за страницей
    Created 1996-2022 by Maxim Chirkov
    Добавить, Поддержать, Вебмастеру